a2 United States Patent

Gulasky

US009471415B2

US 9,471,415 B2
*Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PROBLEM MANAGEMENT SOFTWARE

Applicant: CA, Inc., New York, NY (US)

Inventor: Gary R. Gulasky, Pittsburgh, PA (US)

Assignee: CA, Inec., Islandia, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/854,131

Filed: Sep. 15, 2015

Prior Publication Data

US 2016/0004588 Al Jan. 7, 2016

Related U.S. Application Data

Continuation of application No. 13/837,241, filed on
Mar. 15, 2013, now Pat. No. 9,208,193.

Int. CL.

GO6F 17/00 (2006.01)

GoO6F 11/07 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 11/0793 (2013.01); GO6F 11/079

(2013.01); GO6F 11/0751 (2013.01); GO6F
17/30377 (2013.01); GOGF 17/30539
(2013.01); GO6F 17/30554 (2013.01)

Field of Classification Search
CPC GO6F 9/5077, GO6F 11/1464; GOG6F
9/44505; GO6F 15/76; GO6F 11/1435;
GOG6F 11/2094; GOG6F 11/0793; GO6F 8/36;
GO6F 9/4843; GO6F 11/0781; GOG6F 11/327;
GO6F 11/1608

.

—
st by

USPC 707/600-831, 899, 999.001-999.206
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,649,196 A * 7/1997 Woodhill GOGF 11/1451
707/999.009
7,020,697 Bl 3/2006 Goodman et al.
7,188,317 Bl 3/2007 Hazel
7,251,748 B2 7/2007 Liberty et al.
7,512,898 B2 3/2009 Jennings et al.
8,677,262 B2 3/2014 Baier et al.
8,856,214 B2 10/2014 MccCall
9,027,005 B2 5/2015 Neft
9,069,615 B2 6/2015 Hackborn et al.
2003/0033330 Al 2/2003 Black et al.
2005/0138111 Al 6/2005 Aton et al.
2007/0220428 Al 9/2007 Kureshy et al.
(Continued)

OTHER PUBLICATIONS

Tangjianfeng et al., Research of Mainframe CICS Application
Integration Using CICS SCA, 2009, 4 pages.

(Continued)

Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Stevens & Showalter,
LLP

(57) ABSTRACT

Computer systems are managed by providing systems pro-
grammers with visual displays and user interfaces that
identify certain issues and allow the system programmer to
readily apply fixes, patches, and other updates without
tediously sifting through a mountain of information and
manually addressing those issues. The systems herein, pro-
vide a more streamlined approach for the system program-
mer by reducing the possibility of overlooking a particular
issue that may adversely affect the system.

19 Claims, 15 Drawing Sheets

I

COLLECT DATA INDICATIVE OF
R CONDITION THAT IMPACTS
MAINFRAME SYSTEM

l

EVALUATE DEGREE TOWHICH £/
CONDITION IMPACTS MAINFRAME
SYSTEM

,,,,,,,,,,,,,,,,, L

DETERMINE ACTIONABLE TASK
FOR CONDITION

]

PLAGE ENTRY IN ORDERED
LISTING BASED ON DEGREE

I

DISPLAY ORDERED LISTING WITH
ENTRY ON JSER INTERFACE

)

T ol \\\ 1
" npurrroM B8
””” =< USERY e

N
160

FROM 230
(FG. 2)
(NS GRED

120

140

US 9,471,415 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

10/2007 Shibata et al.
7/2009 Farrell et al.
11/2009 Rosner
11/2009 McPherson
5/2010 Jennings et al.
6/2010 Davies et al.
9/2012 Bolton et al.
10/2012 Kasper et al.
3/2015 Varadharajan et al.

2007/0250544 Al
2009/0182915 Al
2009/0276692 Al
2009/0288000 Al
2010/0125554 Al
2010/0162227 Al
2012/0226677 Al
2012/0254467 Al
2015/0074536 Al

OTHER PUBLICATIONS

Viehl et al., Probabilistic Performance Risk Analysis at System-
Level, 2007, 6 pages.

Dao, Thuy Chan, Notice of Allowance, U.S. Appl. No. 13/836,593;
Oct. 14, 2015, United States Patent and Trademark Office; Alexan-
dria, VA, 7 pages.

U.S. Appl. No. 13/836,593, entitled “Software Management Soft-
ware,” filed Mar. 15, 2013 by Gary R. Gulasky.

U.S. Appl. No. 13/837,241, entitled Problem Management Soft-
ware, filed Mar. 15, 2013 by Gary R. Gulasky.

U.S. Appl. No. 13/837,758, entitled “Information Management
Software,” filed Mar. 15, 2013 by Gary R. Gulasky, now U.S. Pat.
No. 9,116,597.

Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/8387,758; Jan.
9, 2015; United States Patent and Trademark Office; Alexandria,
VA.

Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/836,593; Jan.
28, 2015; United States Patent and Trademark Office; Alexandria,
VA.

Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/837,241; Feb.
23, 2015; United States Patent and Trademark Office; Alexandria,
VA.

Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/836,593; Jun.
10, 2015; United States Patent and Trademark Office; Alexandria,
VA.

Pei Yong Weng; Notice of Allowance; U.S. Appl. No. 13/837,758;
Apr. 30, 2015; United States Patent and Trademark Office; Alex-
andria, VA.

Angelica Ruiz; Notice of Allowance; U.S. Appl. No. 13/837,241;
Jun. 22, 2015; United States Patent and Trademark Office; Alexan-
dria, VA.

* cited by examiner

U.S. Patent

v

Oct. 18, 2016

START

/

Sheet 1 of 15

COLLECT DATA INDICATIVE OF
CONDITION THAT IMPACTS

US 9,471,415 B2

110

FROM230 |
(FIG.2) |

MAINFRAME SYSTEM ¢\ __ ' ~ <
120
EVALUATE DEGREE TOWHICH |/~
CONDITION IMPACTS MAINFRAME
SYSTEM
Ye 130
DETERMINE ACTIONABLE TASK
FOR CONDITION
Ye 140
PLACE ENTRY IN ORDERED
LISTING BASED ON DEGREE
Y Ya 150

DISPLAY ORDERED LISTING WITH
ENTRY ON USER INTERFACE

INPUT FROM |
USER? ™

160

FIG. 1

U.S. Patent

Oct. 18, 2016 Sheet 2 of 15

FROM 160
(FIG. 1)

210

RECEIVE INPUT THROUGH USER L/~

INTERFACE

220

EXECUTE ACTIONABLE TASK 1/
230

CLEAR ENTRY S

\ 4
TO 110

(FIG. 1)

FIG. 2

US 9,471,415 B2

US 9,471,415 B2

Sheet 3 of 15

Oct. 18, 2016

U.S. Patent

s

oLFT A /

€ Ol

HOVLS FWVHANIVIN HO4 S3IVHET FNIINNY

1VIXI4 4 SHVYOA
SN A Scddld A~ s ove
s30d .~ $3d »
SYdd SHIdIH A
BY HONS NSD

YO A9 QVOTINMOQ 04 OANI INTFWIT3
JOING3S 40 ALZRIVA Y SFAINOYd

INIINO LH0ddNS <o\

SAAYHAIT 13OUVL NS

N

OL NOILYWHOLINI LNIW3T

HLIMONOTVY QOWT A3 TTYLSNI

._,z<._,m_mm7
LNINIFOVNYN I¥YMLAOS

F0IAEES TVIILIMO ¥3HLO

HOV3 HO4 NOLLYWHOANI
T3A37 41d QOWT SONFS

TAS
nad

=P

et

Gee

INVISISSY INIWIOVYNVIN FHVYMLI0S OL WILSAS HOVE
NO GQOWT HOVH 404 NOILVINHOANI T3ATT 41d OWT SLINSNYL

ALILN QIJOWYD

0ce

i

WSO ¥O
\ em\

174" /

SW3LI NOILOV 301LOVEd 1834 40 SLsi aing y

TEAITMUSIY ¥V NO (388 WA LSAS HOVZ FH00S
A dWTANVA Y LNOHLIM SLONAOH ONINNAY SW3LSAS

SMD3HO

HLTv3H 30NIWNOCS3Y LNOHLIM ONINNMY SWILSAS
ASYITEH LONAOYUd JFT13AIT-HOVE V ONINNNY SWIALSAS
J37TIVISNE LYOXId 03033N ¥ LNOHLIM DNINNMY SWILSAS
FONVNILNIVIN SH YO Q3T13AIT-MIVE ONINNNY SWILSAS
Q3TIVISNI 44d 3d ¥ HLIM ONINNNY SINFLSAS

J371V1ISNI d¥d V LAOHLIM DONINNNY SINFLSAS

Q3TIVISNI Y3dIH ¥ LNOHLIM ONINNAY SWALSAS
“"ONIMOHS QYYOaHSYd W3LSAS-LINW Y 31V INdCd

089 ‘QIGONVD WSO Y WOYAL VLVA IZATYNY/ALYI1IUH0D

ANVISISSV INJWIOYNYIN FHVYMLA0S

e}

C 0 o C O

O

L]

/

US 9,471,415 B2

Sheet 4 of 15

Oct. 18, 2016

U.S. Patent

Yv Old
ozy
N oLy
ovy N
|
swo Qo Qo Qo Ole O Qe Qo O\© a1 AN
SHYD Olwn Ole Ol @l ®o Mo e & WILSAS VO
OX80 o | WODX
037 oY 0 4 JdVLA
SWTL TIVLSNI 0 SWL
0 MIINSAS
0 HOAIANT
SHYD TIVASNI | 037 #34d oy oY y 40V
SHYD ®lz ®o o Oy ®o ®le @l @I ® | WaLSASAI
SHYD Olvn Dle Ol Wl o ®lo @l @I & TI0YAYd
TIVAYONINNMY | 03033N | O SYHO | QYA | HOLVW | ONISSIN | ONINNNY | ONISSI || T3A3T
WTATISY | LvoXld | HITVAH | SdNT | ¥3d | Sdid s3d SuadH || YSI INYN
SIIYVHEIT NOLLND3X3 WaLSAS
Al M3IA WILSAS

00y

US 9,471,415 B2

Sheet 5 of 15

Oct. 18, 2016

U.S. Patent

ar "ol
0¥
N - 0¥
, -
SHYO BOle Do Do @ b Do Do @ ainaonuds
SHYD Olww Dle Ble O Ble Oy o (| aungonmds
0 X80 Q3aING
037 oY Q3Nddv
SWIL TIVLSNI
SHYD TIVLSNI _ | 937 0y o3
SHYD ®lz ®oe @lo Wl Gl G®Wle ®i¢ m@ alng TIv4
) Olvn @Wlo o Wlo Wlo ®Wlo MWie (| aungonuds
IVAV/QTIVISNI | G3Q33N | MO SHHO | QIVA | HOLYW | ONISSIN | ONINNNY | DNISSIA
T3AF1SY | L¥OXI4 | HLVAH | SdW1 | ¥3d | Sdyd 3d | S¥3dH JNYN
STV NOLLYTTYLSNI

A\ INVISISSY INFWIDYNYIN FHYMLI0S

00¥

U.S. Patent

Oct. 18, 2016

G

Sheet 6 of 15

US 9,471,415 B2

510
A4 /
> RECEIVE DATA
' 520
PARSE DATA FOR MAINFRAME
SYSTEM ERROR INFORMATION
' 530
QUERY SUPPORT DATABASE I/~
USING ERROR INFORMATION
545
IS 540 DOWNLOAD
SOLUTION TO YES SOLUTION FROM
ERROR IN SUPPORT 3 SUPPORT
DATABASE? P DATABASE
S 580
DOWNLOAD S 950 SYSTEM SET
PROBLEM VES PROBLEM UP FOR AUTOMATIC
FROM e ASSOCIATED WITH _ SOFTWARE
SUPPORT ERROR IN SUPPORT INSTALLATION?
OATABASE DATABASE? _
555 NO | 585
OPEN NEW PROBLEM TICKET RECEIVE APPLICABLE
A PTF
560
I v 590
UPLOAD NEW ERROR APPLY REGEIVED PTF
7| INFORMATION TO SUPPORT T
570 DATABASE /999
DEPLOY PTF

FIG. 5

!

U.S. Patent Oct. 18, 2016 Sheet 7 of 15 US 9,471,415 B2

FROM510 O\
(FIG.5) 4

ALL DATA PARSED?

v

PARSE DATA FOR KEYWORD
ASSOCIATED WITH MAINFRAME
ERROR

l

KEYWORD FOUND?

RECORD KEYWORD AND 640
ASSOCIATED VALUE AS ERROR
INFORMATION

Y

TO 530
(FIG. 5)

FIG. 6

US 9,471,415 B2

Sheet 8 of 15

Oct. 18, 2016

U.S. Patent

L 9l
SOVLS INVHANIVIN ¥O- SIdvHaIT IWIINNY
_ : |
~ o r
SOY093Y INSSI MIN A Ges
SAY0ITY NOLLNTOS A _me
SAY0DIH WIE0Hd A
1SV HONS NOLLYWHOANI
SLINSNYAL ANY S103T109 INVLSISSY INTFWIDYNYIN WI180Nd
0L S1DNA0YUd Y2 HO4 NOLYWHOANE HOHYT 40 JNIL SHNSNYHL
INIINO 1HOddNS v2 Y,

AN d3HT WAL HO/ANY (XOE-MOV18) IUNLAYD INIAT MIIASAS

\
02l

-

o

NOILYWHOINI HOHHZ-40-INIL
JHL AvC1dN ONY YIWOLSND FHL 40 4TWHIE NO 3NSSI MIN V N3dO THM YN 3573 =
JuvOgHSYA 3HL 31vadn

aNY YINd OL O4NI W31804d FHL OYOINMOQA ‘AYILSNI ANNO4 SI QYOIFY WI190Nd Y 41 =

JYVYOgHSYA IHL 3LvadN
ANV WSO YO OL 41d ONIATOSTY FHL QYOINMOQ 'ANNO4 SI AHOJIFY NOILNTOS V 1 =
04003y W3180Hd YO GYOIZY NOLLNTOS ONIHOLYIN V ANId OL 3NIINO Ld0ddNS

Ad3ND OL VYLD HOYVES QHOMAINM ATING OL NOILYIWHOANI HOHY3-40-3NIL 3HL 3ZATYNY ©

(013 ‘Viva 4343
‘SANYIWWOD/SIOVSSIW FTOSNOD ‘SdNNADAS) NOLLYIWHO ANI HO¥Y-40-INIL FHL IYNLAYD ©
T YN SHNDD0 THNTIVS ¥ NIHM
INVISISSY INFWIOVNVIN WF1904d

/

/

J

f
0lL

US 9,471,415 B2

Sheet 9 of 15

Oct. 18, 2016

U.S. Patent

89l
00p
g028 2078 o1
\ \ o V.
oo INON anoN N () Y1 AN
INON 3INON WILSAS YO
2va |HSand | oNiaoo | anon | 3iva |Hsand | oNidoo | oxad | o NODX
3NON INON | 0 JdVLA
INON INON | 0 SIWTL
INON INON | 0 MIIASAS
3IVa |is3L | wvdy | 1z INON | 0 HOAIAN3
3iva |ong3d | N3O | L1z INON | ¢ 10V
INON 3INON WALSAS A3A
INON awon |) TI08AYd
NOLLOV NOILOY
INNOD INYN
1394VL | DAN | SALVIS | 3SS | L30wVL | IXAN | SNLVLS | 30SSI | gor | maioks
2 ALIM3A3S
I WILSAS

008

U.S. Patent Oct. 18, 2016 Sheet 10 of 15 US 9,471,415 B2

START

y

| SEARCH SUPPORT DATABASE FOR | /~ 910
> SUPPORT RELATED INFORMATION

920

NEW
SUPPORT RELATED
INFORMATION
FOUND?

YES

DETERMINE LOCATION OF ¥a 930
SUPPORT RELATED INFORMATION

GENERATE URL OF SUPPORT | /- 940
RELATED INFORMATION

y 950
INSERT URL IN USER INTERFACE S

FIG. 9

U.S. Patent Oct. 18, 2016 Sheet 11 of 15 US 9,471,415 B2

950

FROM 940
(FIG. 9)

1010

DETERMINE PRIORITY LEVELOF |/
SUPPORT RELATED INFORMATION

s 1020

DETERMINE LOCATION IN USER

INTERFACE THAT CORRESPONDS
TO PRIORITY LEVEL

1030
POPULATE DETERMINED s
LOCATION WITH URL OF SUPPORT
RELATED INFORMATION

v

TO 910
(FIG. 9)

FIG. 10

US 9,471,415 B2

Sheet 12 of 15

Oct. 18, 2016

U.S. Patent

Nﬁw

.

INFINOD
FHL TV ¥04

304N0S AMYIWIEd

ANIINO
1¥0ddNS o

\

0ye

okl

L1 "9l

QE...\,
SINIWNDOQ FDATTMONN A

SO3AIA IENLNOA OL-MOH A~

(sDad) SIONVHO 204 LONAOYd A
SIATIHSMOO0H 000 LONA0YHd .~

G3033N NIHM Qv3d - TVIHELVIN 3ONTH3TY

om...\
SA334 VIOIW VID0S A
SWOOY LYHO 'SOW3d STLINNWNOD JWYHANIVIN A
‘SNOISS3S ININO SdNOYD HIASN A
‘SWOOHMOHS TvNLyld SSINAVIN INVHSNIYIN AV A
HILSIOTY OL SHUNFIM aTHOM VO~
STVIIILYIN SAILISNIS IWIL - SSANTUYMY
AT
STIATT SY VO MIN A
(sv3d) S1HI TV HOHYI LONAOYHd A
SNOILVOIZILON Y3dIH A
OL GNIL 1SN - SNOILOV aNV SITT v
‘A€ QFZINVOYO
ANV 'Q3ZILIN0Md ‘0321909310 39 TIM INTINOD TIV =
a3anvs

ANY ‘Q3LVLONNY ‘0INRIYAMO0E 38 NYO NOILYWHOINI IHL TV @
(VId) INV.LSISSY INSWIDVNYIN W3 180
ANV (YNS) INVLSISSY INFNIOVNYIN JUYMLIOS SV T13M 8Y
AH0O3LVO A9 083 WOHH INFINCO NOILYWHOANI FHL STZINVOHO ®

INVLSISSY INJWIOVYNYIN NOILYIWHOLNI

US 9,471,415 B2

Sheet 13 of 15

Oct. 18, 2016

U.S. Patent

- vzl Ol
012}
JLYA/AYC NMONMNN | NAMONMNM | NAMONYNA | NMONYND | NAMONMNA | NMONMNN av1 AN
JLVQ/AYQ 0 0 0 0 0 0 AL W3LSAS YO
0 0 0 0 0 QvIHNN | 0 avIuNn|i € NOIX
0 0 0 0 boavad | avanng ¢ ddV.IA
3SVITIH MIN 0 0 0 0 0 0 0 SWL
0 0 0 0 0 0 0 MIINSAS
0 0 0 0 0 0 0 HOAIANT
SY ¥O 0 0 b av3dnn | 0 b QvIUNN | L avRINO || Y 40V
3LYa/AYa 0 0 } e g Y lg Y % | INBLSAS A3d
JLva/Ava 0 0 0 0 0 0 4 TIOYAVd
MO SMHD arvA HOLYIN ONISSIN | ONINNNM | ONISSIN || T3ATT
AHOLSIH IOIAYIS | HLTYIH SdiN vid Sd¥d $3d SHAdIH 04N INYN
SNOILOY ONY SLMTTV ! WILSAS
LY A MIIAWILSAS

AN INVISISSY INFWADVYNYIN NOILYWHOANI

0024

US 9,471,415 B2

Sheet 14 of 15

Oct. 18, 2016

U.S. Patent

dcl Ol
0¥l 0ccl
0 AUVl } 0 b Z 0 av1AN
HSV1d SM3N 0 AdVHaN 0 SE 0 0 b W3LSAS YO
} J413HS 0 = 0 0 b gv3unn WOOX
0 413HS 9 ONs 0 0 0 0 IdVIA
sdid 0 413HS 0 0 0 ? OLMOH| £ Qvay SWL
Z34d Ldd 0 4713HS 0 0 I JUVHS |0 0 MIINSAS
SOL MOH 0 413HS ¢ WIS ¢ NIV 0 0 0 HOAIANT
SO34 SN T4 413HS 0 £ Y00 0 vAs 40v
SWILI SNORIVA | 0 AUYYEl 8 S0 b SNy ST W3LSAS A0
39N1N0OA 0 AdYHElT 0 0 [4 20 0 TIOHAYd
SININNO0A SIATIHS VId3W SOEEE! SdNOoYd XN
IO TMONM $0dd X004 WIO0S | Viva SSY g3sh WAIN [FHVYHS JAVN
TYIHILYIN JONIHFS3 IAILISNES JNIL / SSINIHYMY
MIINWILSAS

/N INVLSISSY INFWIDYNYIN NOILYWHOANI

002t

US 9,471,415 B2

Sheet 15 of 15

Oct. 18, 2016

U.S. Patent

¢l 9Ol
8ig) 9lgl pig))
N S S N
Y31dvay FOVHOLS | 39vd0IS
NIEN ol VI3 w
JIavAONTY | |
& A A
< A J A 4 A\ 4 H >
sna t
oigl
390148
g0gL -
90¢1 1
— ; . .
SNE WILSAS
AHOWIW gr
S S
pOSH 206}

RN

US 9,471,415 B2

1
PROBLEM MANAGEMENT SOFTWARE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/837,241, filed Mar. 15, 2013, entitled
“PROBLEM MANAGEMENT SOFTWARE”, now
allowed, the disclosure of which is hereby incorporated
herein by reference.

BACKGROUND

The present disclosure relates generally to computers and,
more particularly, to systems and methods for managing
computer systems.

Various software components control the operations of
computer systems. For example, operating systems (OS)
manage computer hardware resources and provide common
services for various computer programs or modules that are
installed on a particular computer system. To the extent that
computer systems are connected to a network, it is now
possible to provide software (e.g., OS, programs, modules,
etc.) and other services over the network, with ongoing
efforts to improve over-the-network delivery of software and
services.

SUMMARY

According to various aspects of the present disclosure, a
machine-executable process in a mainframe system is pro-
vided. The process comprises (optionally repeatedly) receiv-
ing data from an error record and parsing the data received
from the error record for a first set of errors in a mainframe
system and a second set of errors in the mainframe system.
Further, the process comprises outputting, to a first segment
of a graphical user interface, a first ordered listing of entries
indicative of the first set of errors in the mainframe system
and outputting, to a second segment of the graphical user
interface that is separate from the first segment, a second
ordered listing of entries indicative of the second set of
errors in the mainframe system. The first segment comprises
an issue section comprising an issue indicator being indica-
tive of an issue that impacts the mainframe system and a
status section comprising a status indicator corresponding to
the issue indicator, the status indicator being indicative of a
status of the issue. Moreover, the second set of errors has a
different impact on the mainframe system than the first set
of errors. The process further comprises querying a support
database in response to a user selecting an entry associated
with an error in the mainframe system from either the first
segment or second segment and determining whether a
solution to the mainframe system error associated with the
user selected entry exists in the support database. Also, the
process comprises downloading the solution from the sup-
port database in response to determining that the solution
exists in the support database.

According to further aspects of the present disclosure, a
hardware computing device in a mainframe system is pro-
vided. The device comprises a receiver to receive data from
an error record and a processor to parse the received data. A
graphical user interface of the device comprises a first
segment for outputting a first ordered listing of entries
indicative of a first set of errors in a mainframe system and
a second segment that is separate from the first segment, for
outputting a second ordered listing of entries, the second
ordered listing of entries being indicative of a second set of

10

35

40

45

55

2

errors in the mainframe system. The first segment comprises
an issue section comprising an issue indicator being indica-
tive of an issue that impacts the mainframe system and a
status section comprising a status indicator corresponding to
the issue indicator, the status indicator being indicative of a
status of the issue. Moreover, the second set of errors has a
different impact on the mainframe system than the first set
of errors. The processor further queries a support database
based upon a select entry associated with an error in the
mainframe system from either the first segment or second
segment and determines whether a solution to the mainframe
system error exists in the support database, the processor to
further download the solution from the support database in
response to determining that the solution exists in the
support database.

According to still further aspects of the present disclosure,
a computing device is configured to execute computer code
to generate a graphical user interface. Further, the device
includes a first memory storing a first segment comprising a
first ordered listing of entries presented in the graphical user
interface, where the first ordered listing of entries indicates
a first set of errors in a mainframe system. Moreover, the
device includes a second memory storing a second segment
that is separate in the graphical user interface from the first
segment, the second segment comprising a second ordered
listing of entries, where the second ordered listing of entries
is indicative of a second set of errors in the mainframe
system. The first segment comprises an issue section com-
prising an issue indicator being indicative of an issue that
impacts the mainframe system and a status section compris-
ing a status indicator corresponding to the issue indicator,
the status indicator being indicative of a status of the issue.
Moreover, the second set of errors has a different impact on
the mainframe system than the first set of errors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart showing an embodiment of a process
for managing software in a mainframe system.

FIG. 2 is a flowchart showing another embodiment of a
process for managing software in a mainframe system.

FIG. 3 is a diagram showing various system components
that are associated with an embodiment of management
software referred to herein as a Software Management
Assistant (SMA).

FIGS. 4A and 4B are diagrams showing an embodiment
of a graphical user interface (GUI) associated with the SMA
of FIGS. 1 through 3.

FIG. 5 is a flowchart showing an embodiment of a process
for managing system problems in a mainframe system.

FIG. 6 is a flowchart showing another embodiment of a
process for managing system problems in a mainframe
system.

FIG. 7 is a diagram showing various system components
that are associated with an embodiment of management
software referred to herein as a Problem Management Assis-
tant (PMA).

FIG. 8 is a diagram showing an embodiment of a GUI
associated with the PMA of FIGS. 5 through 7.

FIG. 9 is a flowchart showing an embodiment of a process
for managing support information in a mainframe system.

FIG. 10 is a flowchart showing another embodiment of a
process for managing support information in a mainframe
system.

US 9,471,415 B2

3

FIG. 11 is a diagram showing various system components
that are associated with an embodiment of management
software, referred to herein as an Information Management
Assistant (IMA).

FIGS. 12A and 12B are diagrams showing one embodi-
ment of a GUI associated with the IMA of FIGS. 9 through
11.

FIG. 13 is a schematic showing one embodiment of a
computer system comprising computer readable program
code for executing any of the processes described with
reference to FIGS. 1 through 12B.

DETAILED DESCRIPTION

According to various aspects of the present disclosure,
some embodiments comprise the steps of repeatedly receiv-
ing data from an error record, parsing the received data for
a mainframe system error, and querying a support database
using the mainframe system error. If a solution to the
mainframe system error exists in the support database, then
the process downloads the solution from the support data-
base.

Hardware resources for many (if not all) computer sys-
tems are controlled by software, such as operating systems
(OS), which provide common services for other installed
computer programs or modules. Often, software and other
services are provided through a network, such as the Inter-
net. While over-the-network services have become some-
what ubiquitous, there are certain contexts in which those
services may become unmanageable.

In mainframe systems (e.g., ZOS environment, etc.) that
are capable of supporting multiple services and devices, it is
possible that the sheer quantity of updates and alerts can
overwhelm the systems programmers (SYSPROGs) that are
tasked with managing those mainframe systems. For
example, mainframe systems may receive thousands of
updates, patches, fixes, or other notices every year. The
volume of information that competes for the system pro-
grammer’s attention is oftentimes unwieldy and can result in
the system programmer overlooking a critical system-re-
lated issue.

Compounding to the volume are the qualitative factors,
such as the degree to which a particular alert or update can
affect a particular mainframe system (e.g., critical system-
related alerts, software patches, information updates, etc.).
Given these complexities, sometimes it becomes tedious and
cumbersome to properly apply all of the updates, patches,
and other fixes that are recommended or required for optimal
system performance.

It is to this and corresponding shortcomings that the
disclosed embodiments are directed. Namely, the disclosed
embodiments provide systems and methods for managing
computer systems by providing a system programmer with
a visual display and a user interface that identifies certain
issues and allows the system programmer to readily apply
fixes, patches, and other updates without tediously sifting
through a mountain of information and manually addressing
those issues. This provides a more streamlined approach for
the system programmer and reduces the possibility of over-
looking a particular issue that may adversely affect the
system.

Specifically, some embodiments include a management
application referred to herein as a Software Management
Assistant (SMA), which collects all relevant software-re-
lated issues in a mainframe system and displays them at a
user interface in easily-discernible categories, preferably in
near-real time. Thus, the SMA provides a system program-

20

30

40

45

4

mer with a way to address software-related issues as they
arise. Other embodiments include a management application
referred to herein as a Problem Management Assistant
(PMA), which identifies problems or errors in a mainframe
system and displays those errors to the system programmer
in near-real time. Similar to the SMA, the PMA provides an
easy-to-use interface for the system programmer to view and
address problems in a mainframe system in near-real time.
Still other embodiments include a management application
referred to herein as an Information Management Assistant
(IMA), which aggregates and displays information relating
to a mainframe system in near-real time. Although each of
these embodiments (e.g., SMA, PMA, and IMA) is indi-
vidually discussed in greater detail below, it should be
appreciated that, in yet other embodiments, the SMA, PMA
and IMA can be used in various combinations to provide a
more robust service to the system programmer. With this in
mind, attention is turned to FIGS. 1 through 13, which
describe example embodiments of the SMA, PMA, IMA,
and example combinations of these components in greater
detail.

Software Management Assistant (SMA)

As noted above, given the volume (and sometimes com-
plexity) of software issues that are unique to mainframe
systems, a system programmer may become overwhelmed
when attempting to address every software-related issue.
Currently, there exists no streamlined approach that assists
the system programmer with such tedious (yet important)
day-to-day tasks. To relieve the system programmer of some
of the routine tasks, some of the disclosed embodiments are
directed to a Software Management Assistant (SMA), as
shown with reference to FIGS. 1 through 4. The SMA
collects all relevant software-related issues in a mainframe
system and displays them at a user interface in easily-
discernible categories, preferably in near-real time, thereby
providing the system programmer with a way to address
software-related issues as they arise. This, in turn, results in
fewer (if any) overlooked tasks and easier management of
software.

With this general overview of the SMA in mind, attention
is turned to FIG. 1, which is a flowchart showing one
embodiment of a process for managing software in a main-
frame system. As shown in FIG. 1, this embodiment of the
process begins by collecting 110 data that is indicative of a
condition that impacts a mainframe system. By way of
example, the condition may range from a High-Impact
PERvasive (HIPER) condition to an uninstalled update for
licensed software.

Continuing with FIG. 1, upon collecting 110 the data, the
process evaluates 120 a degree to which the condition
impacts the mainframe system. Using the previous example,
the degree to which a HIPER condition impacts the main-
frame system would be high, since a HIPER condition can
result in catastrophic effects on the mainframe system.
Conversely, the degree to which an expired licensing key
impacts the mainframe system may be comparatively mini-
mal. For some embodiments, the evaluation 120 may entail
applying a pre-defined set of rules for various conditions.
For other embodiments, the evaluation 120 may entail
parsing data that is associated with the condition to deter-
mine if the data itself has an indicator of a risk level.
Regardless, the evaluation 120 process can provide infor-
mation on new product releases to be applied, service items
to be executed, software items to be removed, software
licensing keys to be updated, operating status updates, etc.

The process next determines 130 an actionable task that is
associated with the condition. For example, a HIPER con-

US 9,471,415 B2

5

dition may require downloading and installation of a Pro-
gram Temporary Fix (PTF) as its actionable task. As yet
another illustrative example, an expired licensing key may
simply require an update of the license as its actionable task.
Indeed, a corresponding actionable task is assignable for a
plethora of conditions that can arise in the mainframe system
(e.g., HIPER, PTF, PTF-in-Error (PE), PTF Resolving PE
PTF (PRP), Product Error Alerts (PEA), Product Document
Changes (PDC), Fix Categories (FIXCAT), License Man-
aged Program (LMP) key expiration, etc.).

The process next places 140 an entry in an ordered listing,
where the entry represents the condition. Additionally, the
entry is placed 130 in the ordered listing based on the degree
to which the condition impacts the mainframe system. Thus,
for example, an entry that represents a HIPER condition
would be placed before an entry that represents a PDC in the
ordered listing. The entry, for some embodiments, also
represents the degree to which the condition impacts the
mainframe system as well as the actionable task that is
associated with the condition.

The ordered listing is then displayed 150 on a user
interface, preferably a graphical user interface (GUI),
through which a user (e.g., system programmer) may pro-
vide input. If the user provides no input, then the process
continues to collect 110 data, evaluate 120 conditions,
determine 130 actionable tasks, place 140 entries in the
ordered listing, and continually update the user interface.
One embodiment of the GUI is described in greater detail
with reference to FIGS. 4A and 4B.

However, if a user provides an input, then the process
continues to FIG. 2. As shown in the flowchart of FIG. 2, the
process receives 210 the user input through the user inter-
face. In response to the user input, the process executes 220
the actionable task. Once the actionable task is executed
220, the process may clear 230 the entry. By way of
example, the entry can be cleared 230 by deleting the entry
from the system, removing the entry from the user interface,
marking the entry as being completed, moving the entry to
a different location on the user interface, or changing the
appearance of the entry. The ordered listing is automatically
updated when the entry is cleared 230. In other embodi-
ments, the entry is cleared by another management appli-
cation, e.g., the IMA. The processes of FIGS. 1 and 2
provide for near-real time updates of software conditions
and allow a user to address those conditions on-the-fly.

Having described several embodiments of processes for
managing software, attention is turned to FIG. 3, which
shows an embodiment of various system components that
are associated with the SMA. Specifically, FIG. 3 shows a
mainframe system z/OS environment that is supported by
components from CA Technologies®. While specific CA
Technologies® components are shown in FIG. 3, it should
be appreciated that this particular environment is only used
to more-clearly illustrate the various embodiments disclosed
herein, and one having skill in the art will appreciate that the
processes, systems, and interfaces described herein are
applicable to other mainframe environments.

With this in mind, the embodiment of FIG. 3 comprises
the SMA 310, which collects the data from various sources,
such as, for example, a mainframe software manager 320
(e.g., CA Chorus™ Software Manager (CSM)) with System
Modification Program/Extended (SMP/E from IBM®) tar-
get libraries 325, an online support database 340 (e.g., CA
Support Online (CSO)), and a software module utility 330
(e.g., CAMODID Utility) with runtime libraries 335. The
collected data is populated into a GUI, such as a dashboard,

10

15

20

25

30

35

40

45

50

55

60

65

6

which shows various mainframe system conditions, such as,
for example, HIPER, PTF, PE, PRP, PEA, PDC, FIXCAT,
LMP expiration, etc.

Since the CA CSM 320, the CAMODID 330, and the CA
CSO 340 are known in the art, only a truncated discussion
of these components is provided to more-clearly illustrate
the understanding of the SMA 310. Specifically, the CA
CSM 320 provides a standardized set of software manage-
ment services that permit a system programmer to acquire,
install, deploy, configure, and maintain mainframe software.
As such, the CA CSM 320 includes Load MODules
(LMOD), other service elements, and their corresponding
information. This information is collected by the SMA 310,
either by querying the CA CSM 320 for software updates or
installs (pulling the data), or alternatively by having the CA
CSM 320 push the data to the SMA 310.

The CAMODID 330 manages the runtime libraries 335
for mainframe stack products. As such, the CAMODID 330
includes information on LMOD PTF levels for each LMOD
on each mainframe system. The SMA 310 also collects this
information from the CAMODID 330 by either pulling the
information or having the CAMODID push that information
to the SMA 310.

The CSO 340 provides technical and customer support
online for technical product resources, implementation and
upgrade of products, notifications and updates on software,
product documentation, and a host of other online support
features. As such, the CSO 340 includes service elements
such as HIPER, PEA, PE, PRP, PDC, FIXCAT, etc. These
service elements are collected by the SMA 310 in a similar
manner to how the SMA 310 collected data from the
CAMODID 330 and the CA CSM 320.

Once the SMA 310 collects the data from the CA CSM
320, CAMODID 330, and the CSO 340, the SMA 310
generates an ordered listing of system conditions, such as
those shown in FIG. 3. The SMA 310 also provides action-
able tasks to the user based on how a particular item will
impact the z/OS mainframe system. For example, the
ordered listing may include systems running: without a
HIPER installed; without a PRP installed; with a PE PTF
installed; without a FIXCAT installed; without a recom-
mended health check; products without a valid LMP key,
etc. The ordered listing is displayed on a user interface, and
is updated in near-real time as new updates or fixes are
collected from the CA CSM 320, CAMODID 330, or CSO
340.

Referring to FIGS. 4A and 4B, an example embodiment
of the user interface is a GUI 400 that has multiple user-
selectable icons. For clarity, the GUI 400 of FIGS. 4A and
4B is specific to a z/OS environment that is operating with
CA Technologies® products and services, such as that
shown in FIG. 3. However, similar principles apply to other
mainframe system environments, and that the GUI 400 is not
intended to be limited to only CA Technologies® products
and services.

With this in mind, the GUI 400 comprises an ordered
listing 410 of conditions associated with different systems,
such as, for example, a payroll system, a quality assurance
system, development systems, etc. Furthermore, for pur-
poses of illustration, the GUI 400 is separated into execution
libraries 420 and installation libraries 430. These libraries
420, 430 comprise notifications that alert a system program-
mer of mainframe system conditions, such as, for example,
missing HIPER, running PE, missing PRP, PEA mis-
matches, invalid LMP, health check statuses, needed FIX-
CAT, etc. As shown in FIGS. 4A and 4B, the HIPER is
located first, since a HIPER condition can catastrophically

US 9,471,415 B2

7

affect a mainframe system, and the LMP alert is located later
(e.g., to the right of the HIPER), since an invalid LMP does
not have the same impact on the mainframe system as a
missing HIPER.

The GUT 400 also comprises multiple icons 440, 450, 460,
which are indicative of different mainframe system condi-
tions for each alert or notification. For example, a check-
mark icon 450 may indicate that the mainframe system is
operating without any issues, while an X-mark icon 460 may
be indicative of a critical system-related condition that needs
to be addressed by the system programmer, while a warning
icon 440 may indicate a less-critical system-related condi-
tion. As such, the type of icon is indicative of a risk level
associated with the mainframe system. For some preferred
embodiments, the icons 450, 460 comprise hyperlinks or
some other type of embedded Universal Resource Locator
(URL) to software programs, such as PTF, which can be
executed to remedy the condition.

The example data in the dashboard illustrated in FIGS. 4A
and 4B illustrate, for example, that the payroll system is
running without any issues and, hence, the system program-
mer does not have any actionable task associated with the
payroll system. Conversely, the installation library 430
shows that the development system has, for example, three
(3) missing HIPER, two (2) needed FIXCAT, etc., all of
which needs the attention of the system programmer. Since
the X-mark icons 460 comprise hyperlinks to PTF or other
programs that can remedy these conditions, the system
programmer can execute the necessary actionable tasks by
selecting the corresponding X-mark icon 460. Upon select-
ing the X-mark icon 460 and triggering the program asso-
ciated with the URL, the SMA 310 (FIG. 3) clears the
condition.

Using another example, the quality assurance (QA) sys-
tem shows a less-critical system-related alert 440, which can
arise from a discrepancy between the execution library 420
and the installation library 430. As shown in FIGS. 4A and
4B, the execution library shows that there are no conditions
that require the attention of the system programmer (i.e., all
icons in the execution library 420 are checkmark icons 450).
However, the installation library 430 shows one icon 460
showing a PE running from a prior build. This discrepancy
between the installation library 430 and the execution library
420 results in a warning icon (exclamation-mark) 440,
which alerts the system programmer of the discrepancy.

By providing such a user-friendly GUI 400, the SMA 310
(FIG. 3) permits a system programmer to efficiently correct
various conditions that impact a mainframe system to dif-
ferent degrees. Thus, unlike prior practice, where the system
programmer drudged through the menial task of manually
identifying the condition, searching for corresponding
actionable tasks to remedy the condition, and then executing
actionable tasks, the embodiments of FIGS. 1 through 4B
provide processes, systems, and user interfaces that stream-
line mainframe system updates and maintenance.

Problem Management Assistant (PMA)

Referring generally to FIGS. 5 through 8, several embodi-
ments illustrate of processes, systems, and user interfaces for
a Problem Management Assistant (PMA). As described in
greater detail herein, the PMA identifies problems or errors
in a mainframe system and displays those errors to the
system programmer in near-real time. Analogous to the
SMA 310, the PMA provides an easy-to-use interface for the
system programmer to view and address problems in a
mainframe system in near-real time. Unlike the SMA 310,
the PMA is directed to identifying errors (or failures or
problems), gathering documentation for the errors, and

25

40

45

55

8

searching for possible solutions. To place some context on
the function of the PMA, mainframe systems can experience
thousands of system errors annually. Consequently, manu-
ally addressing these errors can become a time-consuming
task for a system programmer, and the PMA is directed to
relieving some of this burden.

Referring specifically to FIG. 5, a flowchart illustrates an
embodiment of a process for managing system problems in
a mainframe system. The illustrative process begins by
receiving 510 data. To the extent that the process operates
within a mainframe system environment (e.g., zZOS envi-
ronment), the data can be received from error-reporting
programs, such as, for example, Environmental Record and
Editing Printing (EREP) program by IBM®, or mainframe
environment management programs, such as, for example,
CA-SYSVIEW® program by CA Technologies®. Similar to
the SMA 310 (FIG. 3), the data can be pulled by the PMA
or pushed to the PMA by the error-reporting programs.

Upon receiving 510 the data, the process parses 520 the
data for mainframe system error information. The error
information is used to query 530 a support database, such as,
for example, CSO 340 (FIG. 3). Since support databases,
such as the CSO 340 (FIG. 3) are discussed with reference
to FIG. 3, only a truncated discussion is provided here with
reference to FIG. 5.

Once the support database is queried 530, the process
determines 540 whether a solution exists in the support
database. If a solution exists in the support database, then the
process downloads 545 the solution from the support data-
base. If a particular system is not set up for automatic
software installation, then the process repeats by receiving
510 additional data. If the system is set up for automatic
software installation, then the process receives 585 an appli-
cable PTF (or other software fix), applies 590 the received
PTF, and deploys 595 the PTF. Thereafter, the process
repeats by receiving 510 additional data.

Continuing, if the solution does not exist in the support
database, then the process determines 550 whether the error
or problem exists in the support database. If the error exists
in the support database, then the process downloads 555 the
problem from the support database. If neither the solution
nor the problem exists in the support database, then the
process opens 560 a new problem ticket, and uploads 570
the error information (or problem information) to the sup-
port database. Thereafter, the process of FIG. 5 repeats. As
shown from the embodiment of FIG. 5, the process auto-
matically initiates a resolution process, rather than requiring
a system programmer to manually research and apply a
solution.

Referring to FIG. 6, a flowchart illustrates an example
approach to implementing the process of parsing data (520
in FIG. 5). As illustrated, the parsing process begins by
determining 610 whether or not all of the available data has
been parsed. If all of the available data has been parsed, then
the process exits to the beginning of FIG. 5. Conversely, if
all of the data has not yet been parsed, then the process
parses 620 the data for a keyword associated with a main-
frame error, and determines 630 if the keyword is found in
the data. If the keyword is not found in the data, then the
process returns to determine 610 if all of the data has been
parsed. If, however, the keyword is found, then the process
records 640 the keyword and any associated value as error
information.

To more-clearly illustrate the embodiment of FIG. 6,
some examples of known keywords and values in SYS-
VIEW® or EREP programs are:

US 9,471,415 B2

EXAMPLE KEYWORD EXAMPLE VALUE
JOBNAME DATACOM
ABEND 0Cc4

OFFSET 1C8

PROGRAM NAME DBLOADI12

Thus, for these keywords and values, the process would
build a search argument, such as, for example,
“JOBNAME=DATACOM, ABEND=0C4, OFFSET=1CS,
PROGRAM NAME=DBLOADI12.” This search argument
would be used to query 530 (FIG. 5) the CSO 340 for
possible solutions or problems.

Depending on the desired granularity, the process may be
implemented to take different actions based on whether there
is an exact match, close match, poor match, or no match.
And, the degree to which the search query matches an entry
in the support database can be based on a predefined set of
rules, or other programmable metric.

Referring to FIG. 7, which shows an embodiment of
various system components that are associated with a Prob-
lem Management Assistant (PMA) 710. Similar to the
description of the SMA 310 (FIG. 3), for purposes of clarity,
the PMA 710 is described in detail with reference to a z/OS
environment having CA Technologies® services and prod-
ucts installed. Thus, the embodiment of FIG. 7 comprises a
PMA 710, a CSO 340, and an error-reporting program 720,
such as EREP or SYSVIEW® program.

When a failure or error occurs in the z/OS mainframe
system, the PMA 710 receives the error information from the
SYSVIEW® or EREP program 720. Again, the error infor-
mation can be pulled from the SYSVIEW® or EREP
program 720, or alternatively the SYSVIEW® or EREP
program 720 can push the error information to the PMA 710.
Once the error information is received, the PMA 710 ana-
lyzes the error information to build a keyword search
criteria.

That keyword search criteria is used to query CSO 340 to
find a matching solution record or a matching problem
record, as shown in the process of FIG. 6. If a solution record
is found, then its corresponding solution (e.g., resolving
PTF) is downloaded to the CA CSM® 320 (FIG. 3) and a
hyperlink to the downloaded PTF is displayed on a GUI,
such as that shown in FIG. 8. If no solution is found, but the
same (or similar) problem is found, then the PMA 710
downloads the problem information and a hyperlink to the
downloaded problem information is displayed on the GUI.
Otherwise (when neither the solution nor the problem are
found in the CSO 340), the PMA 710 opens a new issue,
uploads the new issue to the CSO 340, and updates the GUI
to reflect the new issue.

One embodiment of the PMA GUI 800 is shown with
reference to FIG. 8. As shown in FIG. 8, the GUI 800
comprises an ordered listing 810, similar to that shown in
FIGS. 4A and 4B with reference to the SMA 310. Addition-
ally, the GUI 800 comprises risk level segments 820a, 8205
(collectively 820) that are arranged in order of severity or
risk level. Thus, for example, severity-1 would indicate
issues that can have a high impact on the mainframe system,
severity-2 would indicate issues that have a lesser impact on
the mainframe system, etc. Each risk level segment further
comprises an ordered listing of the error, if any, its corre-
sponding status, a recommended (or required) actionable
task to remedy the error, a target, etc.

The specific example of FIG. 8 shows that there are no
errors or issues with a payroll system, but there are four (4)

20

25

30

35

40

45

65

10

problem counts that are associated with some development
system components. As such, there is an X-mark icon 460 in
the development system segment to indicate the errors,
while a checkmark icon 450 exists in the payroll system
segment to indicate that payroll system is error-free. When
the system programmer selects the X-mark icon 460, the
PMA 710 (FIG. 7) searches for the solution in the CSO 340
and takes appropriate action, as described with reference to
FIGS. 5 and 6.

Similar to the SMA 310 (FIG. 3), by providing such a
user-friendly GUI 800, the PMA 710 (FIG. 3) permits a
system programmer to efficiently handle errors and fixes,
which were previously applied through manual identifica-
tion and resolution. Thus, the embodiments of FIGS. 5
through 8 provide processes, systems, and user interfaces
that alleviate the work of the system programmer in main-
taining a mainframe system that is largely error-free.
Information Management Assistant (IMA)

In addition to the SMA 310 (FIG. 3) and the PMA 710
(FI1G. 7), another embodiment includes an Information Man-
agement Assistant (IMA), which aggregates and displays
information relating to a mainframe system in near-real
time. Given the sheer volume of software updates and errors
(sometimes in excess of tens of thousands of total items
annually for mainframe systems), the amount of information
and documentation generated from these errors, updates,
fixes, etc. can be overwhelming to a system programmer.
The IMA is directed to providing the system programmer
with a convenient interface to manage all of this informa-
tion.

Referring to FIG. 9, a flowchart illustrates an embodiment
of a process for managing support information in a main-
frame system. The illustrative process begins by searching
910 a support database, such as a CSO 340, and determining
920 whether new support related information is found in that
support database. If no new support related information is
found, then the process ends. However, if new support
related information is found, then the process determines
930 a location where the support related information is
found. Using that location, the process generates 940 a
Universal Resource Locator (URL) for the support related
information, and inserts 950 the URL into a user interface.

Referring to FIG. 10, a flowchart illustrates, in greater
detail, an embodiment of a process for inserting the URL
into the user interface (e.g., see 950 in FIG. 9). The process
determines 1010 a priority level of support related informa-
tion. For example, the priority level can be noted as critical
(which would relate to HIPER, PEA, and other items that
have a high impact on a mainframe system), time-sensitive
(which would relate to social media feeds, calendared events
(e.g., meetings, conventions, social media events, etc.),
reference materials (e.g., documentation, books, online
links, etc.), or any other desired category. Upon determining
1010 the priority level, the process determines 1020 the
appropriate location within the user interface that corre-
sponds to the priority level, and populates 1030 that location
with the URL of the support related information. Thus, for
example, if a particular piece of information is determined
1010 to be critical to the mainframe system, then the URL
to that information will be placed in the location that is
designated for critical system-related information, and so on.
As one can see, by organizing the information in this
manner, the system programmer can easily tend to more-
critical system-related issues before tending to less-critical
system-related issues.

Referring to FIG. 11, various system components are
associated with an embodiment of an Information Manage-

US 9,471,415 B2

11

ment Assistant (IMA) 1110. Again, a zZ/OS environment with
CSO 340 is used to more clearly illustrate the IMA 1110. As
noted earlier, the CSO 340 is a primary source for informa-
tion and documentation on all of the software components
that reside in the mainframe system. Thus, in the example
implementation, the IMA 1110 searches the CSO 340 for all
of the information that will be used to populate the IMA
1110 user interface, which is shown in greater detail with
reference to FIGS. 12A and 12B. The IMA 1110 organizes
the information from the CSO 340 by category and, for some
embodiments, also organizes the information in a manner
that corresponds to the display on the SMA 310 or the PMA
710. The IMA 1110 also permits bookmarking, annotating,
or saving of information, depending on how the system
programmer wishes to organize and review the information.
Since methods of annotating and bookmarking information
are known, only a truncated discussion is provided herein.
All of this information is then displayed on a GUIL.

Referring to FIGS. 12A and 12B, an example dashboard
GUI is illustrated, which may be associated with the IMA
1110 of FIG. 11. Similar to the SMA GUI 400 and the PMA
GUI 800, the IMA GUI 1200 comprises an ordered listing
1210, which corresponds to its SMA and PMA counterparts.
As shown in the specific embodiment of FIGS. 12A and
12B, all of the information in the IMA GUI 1200 are
organized in distinct categories, such as, for example, Alerts
and Actions 1220, Awareness and Time Sensitive 1230, and
Reference Manuals 1240. Each of these categories, in turn,
may have their own sub-categories. For example, the Alerts
and Actions 1220 corresponds to the conditions in the SMA
GUI 400. Thus, the Alerts and Actions 1220 section includes
information on HIPER, PE, PRP, PEA, LMP, Health Check,
etc. Within each category or sub-category, the IMA GUI
1200 provides hyperlinks to a relevant URL to the informa-
tion. Thus, when a system programmer selects a URL, the
IMA 1110 (FIG. 11) retrieves the corresponding information
for the system programmer.

Conventionally, it is possible to overload the system
programmer with information, especially since mainframe
systems can experience upwards of tens of thousands of
alerts and errors in any given year. Thus, for some embodi-
ments, the IMA 1110 (FIG. 11) also permits a system
programmer to enter an experience level (e.g., novice,
proficient, expert, etc.). Where a feature such as an experi-
ence level selection is provided, searches of the CSO 340
may be customized for information that is tailored to that
particular experience level. So, for example, the IMA GUI
1200 of an expert system programmer would probably not
include a “Getting Started” reference manual, while the IMA
GUI 1200 of a novice system programmer would include
such a reference manual.

By providing a central source for viewing and retrieving
information, the IMA 1110 (FIG. 11) and its corresponding
GUI 1200 allows a system programmer to quickly review
what information is available, and retrieve information as
the system programmer desires.

Interplay Between SMA, PMA, and IMA

The SMA (FIGS. 1 through 4B), the PMA (FIGS. 5
through 8), and the IMA (FIGS. 9 through 12B) can be
implemented in cooperation to provide a more powerful user
experience for a system programmer. For example, when the
SMA provides a software update or a HIPER PTF, corre-
sponding documentation on the HIPER PTF or update can
be populated in the IMA. Thus, the system programmer has
both the update and the relevant documentation relating to
the update.

10

15

20

25

30

35

40

45

50

55

60

65

12

Also, when the PMA identifies an error for which there is
an appropriate solution, that solution can be downloaded to
the SMA for execution by the system programmer, and a
corresponding IMA entry can be generated. Thus, by coor-
dinating the entries and actions between the SMA, PMA,
and IMA, the system programmer can be provided with a
streamlined interface in which to update and maintain the
mainframe system that is under the care of the system
programmer.

Computer System Architecture

Referring to FIG. 13, a schematic of an example computer
system having computer readable program code for execut-
ing any aspects described herein with regard to FIGS. 1
through 12B is illustrated. The computer system 1300
includes one or more microprocessors 1302 that are con-
nected to memory 1304 via a system bus 1306. A bridge
1308 connects the system bus 1306 to an input/output (I/O)
Bus 1310 that links peripheral devices to the micropro-
cessor(s) 1302. Peripherals may include storage 1312, such
as a hard drive, removable media storage 1314, e.g., floppy,
flash, CD and/or DVD drive, I/O device(s) 1316 such as a
keyboard, mouse, etc. and a network adapter 1318. The
memory 1304, storage 1312, removable media insertable
into the removable media storage 1314 or combinations
thereof, can be used to implement the methods, configura-
tions, interfaces and other aspects set out and described
herein with regard to FIGS. 1 through 12B.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described
herein in any of a number of patentable classes or context
including any new and useful process, machine, manufac-
ture, or composition of matter, or any new and useful
improvement thereof. Accordingly, aspects of the present
disclosure may be implemented entirely in hardware,
entirely in software (including firmware, resident software,
micro-code, etc.) or by combining software and hardware
implementation that may all generally be referred to herein
as a “circuit,” “module,” “component,” or “system.” Fur-
thermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable media having computer readable
program code embodied thereon.

Any combination of one or more computer readable
media may be utilized. The computer readable media may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a
portable compact disc read-only memory (CORaM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-

US 9,471,415 B2

13

magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable signal medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, CII,
VB.NET, Python or the like, conventional procedural pro-
gramming languages, such as the “c” programming lan-
guage, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP,
ABAP, dynamic programming languages such as Python,
Ruby and Groovy, or other programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider) or in a cloud computing
environment or offered as a service such as a Software as a
Service (SaaS).

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatuses (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable instruction execution apparatus, create a mechanism
for implementing the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that when executed can
direct a computer, other programmable data processing
apparatus, or other devices to function in a particular man-
ner, such that the instructions when stored in the computer
readable medium produce an article of manufacture includ-
ing instructions which when executed, cause a computer to
implement the function/act specified in the flowchart and/or
block diagram block or blocks. The computer program
instructions may also be loaded onto a computer, other
programmable instruction execution apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatuses or other
devices to produce a computer implemented process such
that the instructions which execute on the computer or other
programmable apparatus provide processes for implement-
ing the functions/acts specified in the flowchart and/or block
diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-

10

40

45

55

14

gram products according to various aspects of the present
disclosure. In this regard, each block in the flowchart or
block diagrams may represent a module, segment, or portion
of code, which comprises one or more executable instruc-
tions for implementing the specified logical function(s). It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially con-
currently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting
of the disclosure. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the
claims below are intended to include any disclosed structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present disclosure has been presented for
purposes of illustration and description, but is not intended
to be exhaustive or limited to the disclosure in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the disclosure. The aspects of the
disclosure herein were chosen and described in order to best
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art
to understand the disclosure with various modifications as
are suited to the particular use contemplated. For example,
while various embodiments are disclosed within the context
of a z/OS environment, it should be appreciated by those
having skill in the art that the disclosed processes, systems,
and user interfaces can be modified to accommodate any
other mainframe system environment. Also, while particular
embodiments are described with reference to CA Technolo-
gies® products and services, it should be appreciated that
the disclosed embodiments are not limited to CA Technolo-
gies® products and services but, instead, can be tailored to
accommodate other products and services that are deployed
in a mainframe system environment. These, and other such
changes, are intended to be within the scope of this disclo-
sure.

What is claimed is:
1. In a mainframe system, a machine-executable process
comprising:

receiving data from at least one error record;

parsing the received data for a first set of errors in a
mainframe system and a second set of errors in the
mainframe system;

outputting, to a first segment of a graphical user interface,
a first ordered listing of entries indicative of the first set
of errors in the mainframe system, the first segment
comprising:

US 9,471,415 B2

15

an issue section comprising an issue indicator being
indicative of an issue that impacts the mainframe
system; and
a status section comprising a status indicator corre-
sponding to the issue indicator, the status indicator
being indicative of a status of the issue;
outputting, to a second segment of the graphical user
interface that is separate from the first segment, a
second ordered listing of entries indicative of the
second set of errors in the mainframe system, the
second set of errors having a different impact on the
mainframe system than the first set of errors;

querying a support database in response to a user selecting
an entry associated with an error in the mainframe
system from either the first segment or second segment;

determining whether a solution to the mainframe system
error associated with the user selected entry exists in
the support database; and

downloading the solution from the support database in

response to determining that the solution exists in the
support database.

2. The process of claim 1, further comprising:

determining whether a problem record associated with the

mainframe system error exists in the support database
in response to determining that the solution does not
exist in the support database; and

downloading the problem record from the support data-

base in response to determining that the problem record
exists in the support database.

3. The process of claim 2, further comprising:

opening a new issue in response to determining that the

problem record does not exist in the support database;
and

uploading the new issue to the support database as a new

problem record.

4. The process of claim 1, further comprising:

executing the downloaded solution.

5. The process of claim 1, wherein parsing the received
data for the mainframe system error comprises:

parsing the data for a keyword associated with a main-

frame system error;

determining whether the keyword exists in the data; and

recording the keyword and an associated value as the

mainframe system error.

6. The process of claim 1, wherein parsing the received
data for the mainframe system error comprises at least one
of:

parsing the data for a JOBNAME keyword;

parsing the data for a PROGRAM NAME keyword; and

parsing the data for an OFFSET keyword.

7. The process of claim 2, wherein receiving data from an
error record comprises:

receiving data from an Environmental Record and Editing

Printing (EREP) program in a z/OS mainframe system
environment.

8. The process of claim 2, wherein receiving data from an
error record comprises:

receiving data from a SYSVIEW® program in a z/OS

mainframe system environment.

9. A hardware computing device in a mainframe system,
comprising:

a receiver to receive data from at least one error record;

a processor to parse the received data; and

a graphical user interface comprising a first segment for

outputting a first ordered listing of entries indicative of

a first set of errors in a mainframe system, the first

segment comprising:

an issue section comprising an issue indicator being
indicative of an issue that impacts the mainframe
system; and

20

25

35

40

45

60

16

a status section comprising a status indicator corre-
sponding to the issue indicator, the status indicator
being indicative of a status of the issue;

wherein:
the graphical user interface further comprises a second

segment that is separate from the first segment, for
outputting a second ordered listing of entries, the
second ordered listing of entries being indicative of
a second set of errors in the mainframe system, the
second set of errors having a different impact on the
mainframe system than the first set of errors;

the processor further queries a support database based
upon a select entry associated with an error in the
mainframe system from either the first segment or
second segment; and

the processor further determines whether a solution to
the mainframe system error exists in the support
database, the processor to further download the solu-
tion from the support database in response to deter-
mining that the solution exists in the support data-
base.

10. The hardware computing device of claim 9, wherein
the processor is operative to further determine whether a
problem record associated with the mainframe system error
exists in the support database in response to determining that
the solution does not exist in the support database, the
processor to further download the problem record from the
support database in response to determining that the problem
record exists in the support database.

11. The hardware computing device of claim 10, wherein
the processor is operative to further open a new issue in
response to determining that the problem record does not
exist in the support database, the processor to further upload
the new issue to the support database as a new problem
record.

12. The hardware computing device of claim 9, wherein
the processor is operative to further execute the downloaded
solution.

13. The hardware computing device of claim 9, wherein
the processor is operative to further parse the data for a
keyword associated with a mainframe system error, the
processor to further determine whether the keyword exists in
the data, the processor to further record the keyword and an
associated value as the mainframe system error.

14. The hardware computing device of claim 9, further
comprising:

a SYSVIEW® program communicatively coupled to the

receiver, the EREP to provide the data.

15. The hardware computing device of claim 9, further
comprising:

an online customer support database communicatively
coupled to the processor, the online customer support
database comprising:
solutions; and
problem records.

16. A hardware computing device comprising:

a hardware processor coupled to memory, the hardware
processor configured to execute computer code to
implement a graphical user interface;

a first memory storing a first segment comprising a first
ordered listing of entries presented in the graphical user
interface, the first ordered listing of entries being
indicative of a first set of errors in a mainframe system,
the first segment comprising:
an issue section comprising an issue indicator being

indicative of an issue that impacts the mainframe
system; and

a status section comprising a status indicator corre-
sponding to the issue indicator, the status indicator
being indicative of a status of the issue; and

US 9,471,415 B2

17

a second memory storing a second segment that is sepa-
rate in the graphical user interface from the first seg-
ment, the second segment comprising a second ordered
listing of entries, the second ordered listing of entries
being indicative of a second set of errors in the main-
frame system, the second set of errors having a different
impact on the mainframe system than the first set of
errors.

17. The hardware computing device of claim 16, further
comprising a third segment that is visually separate from the
first segment, the third segment further being visually sepa-
rate from the second segment, the third segment comprising
a third ordered listing of entries, the third ordered listing of
entries being indicative of a third set of errors, the third set
of errors having a different impact on the mainframe system
than the first set of errors and the second set of errors.

18. The hardware computing device of claim 16, further
comprising a problem count section that represents a number
of errors in a mainframe system.

19. The hardware computing device of claim 18, wherein
the problem count section comprises sub-sections, each
sub-section being associated with a different sub-system of
the mainframe system.

#* #* #* #* #*

20

18

